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Abstract—Existing object tracking applications focus on finding the moving patterns of a single object or all objects. In contrast, we

propose a distributed mining algorithm that identifies a group of objects with similar movement patterns. This information is important in

some biological research domains, such as the study of animals’ social behavior and wildlife migration. The proposed algorithm

comprises a local mining phase and a cluster ensembling phase. In the local mining phase, the algorithm finds movement patterns

based on local trajectories. Then, based on the derived patterns, we propose a new similarity measure to compute the similarity of

moving objects and identify the local group relationships. To address the energy conservation issue in resource-constrained

environments, the algorithm only transmits the local grouping results to the sink node for further ensembling. In the cluster ensembling

phase, our algorithm combines the local grouping results to derive the group relationships from a global view. We further leverage the

mining results to track moving objects efficiently. The results of experiments show that the proposed mining algorithm achieves good

grouping quality, and the mining technique helps reduce the energy consumption by reducing the amount of data to be transmitted.

Index Terms—Distributed clustering, similarity measure, object tracking, WSN.
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1 INTRODUCTION

RECENT advances in location-acquisition technologies,
such as global positioning systems (GPSs) and wireless

sensor networks (WSNs), have fostered many novel
applications like object tracking, environmental monitoring,
and location-dependent service. These applications gener-
ate large amounts of location data, and many approaches
focus on compiling the collected data to identify the
repeating movement patterns of objects of interest. The
objective is to facilitate the analysis of past movements and
estimate future movements, as well as support approximate
queries on the original data [17], [34], [38], [48], [52].

In object tracking applications, many natural phenomena
show that moving objects often exhibit some degree of
regularity in their movements. For example, the famous
annual wildebeest migration demonstrates that the move-
ment of creatures is temporally and spatially correlated. In
addition, biologists have found that many creatures, such as
elephants, zebra, whales, and birds, form large social groups
when migrating to find food, or for breeding, wintering, or

other unknown reasons. These characteristics indicate that
the trajectory data of multiple objects may be correlated.
Moreover, some research domains, such as the study of
animals’ social behavior and wildlife migration [41], [44],
are more concerned with a group of animals’ movement
patterns than each individual’s. This raises a new challenge
of finding moving animals belonging to the same group and
identifying their aggregated movement patterns.

Many researchers model the temporal-and-spatial corre-
lations of moving objects as sequential patterns in data
mining, and various algorithms have been proposed to
discover frequent movement patterns [17], [33], [34], [37],
[48], [52]. However, such works only consider the movement
characteristics of a single object or all objects. Other works,
such as [35], [50], take the euclidean distance to measure the
similarity of two entire trajectories, and then derive groups
of mobile users based on their movement data. Since objects
may be close together in some types of terrain, such as
gorges, and widely distributed in less rugged areas, such as
grassland, their group relationships are distinct in some
areas and vague in others. Instead of applying global
clustering on entire trajectories, examining partial trajec-
tories of individual areas shows more opportunities of
revealing the local group relationships of moving objects.

Another motivation for discovering the group relation-
ships and movement patterns behind the trajectories of
moving objects, such as monkeys or elephants, is to reduce
tracking costs, especially in resource-constrained environ-
ments like WSNs. In a WSN, a large number of miniature
sensor nodes with sensing, computing, and wireless
communication capabilities are deployed in remote areas
for various applications, such as environmental monitoring
or wildlife tracking. As the sensors are generally battery-
powered, recharging a large number of them is difficult;
therefore, energy conservation is paramount among all the
design issues in WSNs [5]. One important characteristic of
WSNs is that sensors are deployed close together to ensure
complete coverage of the monitored area. As a result, the
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sensing fields of multiple sensors overlap, so there is likely
to be some redundancy in readings of nearby sensors or in a
series of readings of a single sensor. Most applications
incorporate data aggregation techniques to combine data
from multiple sources and filter redundant data; and
thereby, reduce the amount of data and—by extension—the
energy consumption. If we can find moving animals
belonging to the same group and identify their aggregated
movement patterns, we can utilize the group relationships
in data aggregation to reduce long-distance transmissions,
or in wake-up scheduling to keep most sensors asleep. To
the best of our knowledge, little research has been dedicated
to discovering a group of objects with similar movement
patterns for data aggregation purposes. Algorithms for
discovering the movement patterns of a specific group of
objects in a resource-constrained environment have not
been proposed, and related design issues have not been
discussed in the literature. Moreover, we find that dis-
covering the movement patterns of a group of objects is
more difficult than finding the patterns of a single object
because we need to identify a group of objects before or
after discovering their movement patterns. To address these
problems, we first propose a mining framework that can
identify a group of moving objects and discover their group
movement patterns in a distributed manner. The discovered
information is then used in the design of an efficient
tracking network. We show that discovering and exploiting
the movement patterns of a group of objects can further
reduce the transmission costs and thereby conserve energy.

In the first part of the paper, we present our distributed
mining algorithm, which is comprised of 1) a local Group
Movement Pattern Mining (GMPMine) algorithm that
extracts local group information, and 2) a Cluster Ensem-
bling (CE) algorithm that combines and improves the local
grouping results. To address the energy conservation issue
in WSNs, the algorithm only transmits the local grouping
results to the sink node for further ensembling, instead of
all the location data about moving objects. In contrast to
approaches that perform clustering on entire trajectories at
a central server, the proposed algorithm discovers the
group relationship in a distributed manner on sensor nodes.
The network structure naturally partitions the trajectories of
moving objects into segments, which our algorithm uses to
identify the objects’ local group relationships. Thus, we can
discover the group relationships of objects that may be
blurred when analyzing an entire trajectory. As a result, we
can aggregate the location data of such objects in areas
where they have distinct group relationships. Moreover,
our algorithm considers the diversity of the number of
groups and their sizes in the tracking applications. Since
there are inherent variations in the number of groups and
their sizes (e.g., elephant herds may contain 8-100 indivi-
duals, depending on the environment and family size [1]), it
is difficult to predetermine these two parameters. Therefore,
we use the HCS algorithm [21] to cluster objects efficiently
without prespecifying the number of groups or their sizes.

In the second part of the paper, we leverage the mining
results to reduce the number and size of packets in the
proposed tracking network, which consistently reports the
locations of moving objects. We utilize the discovered
group information to combine the location data of a group
of objects in data aggregation. By using object movement
patterns as the prediction model, we do not need to send

the update packets for the objects whose locations are
predictable. Moreover, the group information enables us to
adaptively adjust the range in which a group of objects is
monitored and, thereby, limit the overhead due to flooding
within that range. Therefore, the proposed design reduces
long-distance transmissions and the amount of data to be
transmitted. It also reduces in-network traffic and prevents
hot spots around the clusterheads (CHs).

The contribution of this paper is threefold. First, we
propose a distributed mining framework to discover group
relationships as well as group movement patterns. Second,
we propose a new pairwise measure based on pattern
similarity to compute the similarity of moving objects.
Third, we use the discovered information to track moving
objects efficiently. The remainder of this paper is organized
as follows: In Section 2, we review related works, provide
an overview of our network model and location model,
and define the notations used throughout the paper. In
Section 3, we describe the design of our distributed mining
algorithm. Section 4 considers the design aspects of our
tracking network, and Section 5 details our experimental
results. Then, in Section 6, we summarize our conclusions.

2 PRELIMINARIES

2.1 Related Work

2.1.1 Movement Pattern Mining

The temporal-and-spatial correlations and the regularity in
the trajectory data sets of moving objects are often modeled
as sequential patterns for use in data mining. Agrawal and
Srikant [4] first defined the sequential pattern mining
problem and proposed an Apriori-like algorithm to mine
frequent sequential patterns. Han et al. proposed FreeSpan
[20], which is an FP-growth-based algorithm that addresses
the sequential pattern mining problem by considering the
pattern-projection method. For handling the uncertainty in
trajectories of mobile objects, Yang and Hu [52] developed a
new match measure and proposed TrajPattern to mine
sequential patterns from imprecise trajectories. Moreover, a
number of research works have been elaborated upon
mining traversal patterns for various applications. For
example, Chen et al. [13] proposed the FS and SS algorithms
for mining path traversal patterns in a Web environment
while Peng and Chen [37] proposed an incremental
algorithm to mine user moving patterns for data allocation
in a mobile computing system. However, sequential
patterns or path traversal patterns do not provide sufficient
information for location prediction or clustering. The
reasons are as follows: First, for sequential pattern mining
or path traversal pattern mining extract frequent patterns of
all objects, meaningful movement characteristics of indivi-
dual objects may be ignored. Second, a sequential pattern or
a traversal pattern carries no time information between
consecutive items, so they cannot provide accurate in-
formation for location prediction when time is concerned.
Third, sequential patterns are not full representative to
individual trajectories because a sequential pattern does not
contain the information about the number of times it occurs
in each individual trajectory. To discover significant
patterns for location prediction, Morzy proposed Apriori-
Traj [33] and Traj-PrefixSpan [34] to mine frequent
trajectories, where consecutive items of a frequent trajectory
are also adjacent in the original trajectory data. Meanwhile,
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the approach in [17] extracts T-patterns from spatial
temporal data sets to provide concise descriptions of
frequent movements. Tseng and Lin [48] proposed the
TMP-Mine algorithm for discovering the temporal move-
ment patterns of objects. However, the above Apriori-like or
FP-growth-based algorithms suffer from computing effi-
ciency or memory problems, which make them unsuitable
for use in resource-constrained environments. In addition,
they focus on discovering frequent patterns of all objects.

2.1.2 Trajectory Clustering

Recently, clustering based on objects’ movement behavior
has attracted more attention. For example, Li et al. [30]
employ Moving Microclusters (MMC) to discover and
maintain a cluster of moving objects online. Meanwhile,
Lee et al. [28] proposed trajectory clustering to discover
popular movement paths. Clustering similar trajectory
sequences to discover group relationships is closely related
to our problem. Wang et al. [50] transform the location
sequences into a transaction-like data on users and based on
which to obtain a valid group. However, the proposed AGP
and VG-growth algorithms are Apriori-like or FP-growth-
based algorithms that suffer from high computing cost and
memory demand. Nanni and Pedreschi [35] apply a
density-based clustering algorithm to the trajectory cluster-
ing problem based on the average euclidean distance of two
trajectories. However, the above works that discover group
information based on the proportion of the time a group of
users stay close together or the average euclidean distance
of the entire trajectories may not reveal the local group
relationships, which are required for many applications.

2.1.3 Similarity Measure

Identifying the similarity (or distance) between two
trajectories is essential for clustering. Computing the
average euclidean distance of two geometric trajectories is
a simple and useful approach. Nevertheless, the geometric
coordinates are expensive and not always available. Other
approaches, such as EDR, LCSS, and DTW, are widely used
to compute the similarity of symbolic sequences [12].
However, the above dynamic programming approaches
suffer from scalability problem [19]. Therefore, approxima-
tion or summarization techniques are used to represent
original data for providing scalability. For example,
Guralnik and Karypis [19] represent each data sequence
by a vector whose dimensions are the sequential patterns,
and use a vector-based K-means algorithm to find the
clusters of objects. But there are two issues of this approach.
First, as mentioned previously, sequential patterns are
unsuitable for our applications. Second, since meaningful
patterns are underpruned if the minimum support thresh-
old is not adequate, the importance of a sequential pattern
regarding different sequences can be very different. How-
ever, when projecting each data sequence into a vector
space of sequential patterns, the importance of a sequential
pattern regarding to each data sequence is not mentioned.
In addition, Yang and Wang [53] employ a probabilistic
suffix tree to learn the structural features of sequences and
proposed a new similarity measure which computes the
similarity of a probabilistic suffix tree and a sequence. Their
clustering algorithm iteratively identifies a sequence to a
cluster and adjusts the representative probabilistic suffix
tree for each cluster. However, the generated clusters may

overlap which differentiates their objective from ours. In
addition, once the tree or the sequence is changed,
recalculating their similarity requires repeating the whole
similarity computing process, which is not desirable for
resource-constrained or streaming environments.

2.1.4 Distributed Clustering

Distributed clustering is an important research topic. Most
of the approaches proposed in the literature focus on
seeking a combination of multiple clustering results to
achieve better clustering quality, stability, and scalability.
For example, Strehl and Ghosh [46] introduced and
formulated the clustering ensemble problem to a hyper-
graph partitioning problem, and proposed CSPA, HGPA,
and MCLA to compute the best K-partition of the graph.
Ayad et al. [8] presented a probabilistic model to combine
cluster ensembles by utilizing information theoretic mea-
sures. Fred and Jain [16] combine multiple runs of the
K-means algorithm with random initializations and random
numbers to obtain the final consensus partition. Fern and
Brodley [15] apply random projection to the high dimen-
sional data and cluster the reduced data by using EM for a
single run of clustering. The Collective PCA technique [24]
proposed by Kargupta et al. is applied to reduce the vector
dimension for distributed clustering of high dimensional
heterogeneous data. However, since the trajectory data set
is composed of sequential data, one of the challenges
addressed in our paper is the similarity comparison of
location sequences. The data types of the above works [8],
[15], [16], [24], [46] are most integer vector or categorical
data, and their related issues are thereby different from
ours. In addition, previous works that require a predeter-
mined k in their clustering or ensembling algorithms are not
suitable for our applications. Besides, although the local
grouping results in a vector of integers, each of which
represents the mapping between an object and its belonging
group, dimension reduction like Collective PCA [24] is
unnecessary in our case.

2.2 Hierarchical Network Structure and Location
Model

Many researchers believe that a hierarchical architecture
provides better coverage and scalability, and also extends
the network lifetime of WSNs [47], [56]. In a hierarchical
WSN, such as that proposed in [36], the energy, computing,
and storage capacity of sensors are heterogeneous. A high-
end sophisticated node, such as Intel Stargate [3], is assigned
as a CH to perform high complexity tasks; while a resource-
constrained node, such as Mica2 mote [2], performs the
sensing and low complexity tasks. In this work, we adopt a
hierarchical and cluster-based network structure with
K layers. As shown in Fig. 1a, the nodes are clustered in
each level, and each cluster is a mesh network of fixed size,
i.e., each cluster is a set of n� n sensors. We assume that
each sensor in a cluster has a locally unique ID, and denote
the sensor IDs by an alphabet �. Fig. 1b shows an example of
a two-layer network structure, where each cluster contains
16 nodes whose IDs are identified by � ¼ fa; b; . . . ; pg.

A cluster of sensors communicate with each other by
using multihop routing, and wake up on their duty cycles to
carry out a given task [6]. They collaboratively gather or
relay remote information to a base station called a sink.
Take the tracking application for example. When a sensor
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wakes up and detects an object of interest, it transmits the
location data of the object to its CH and then enters the
sleep mode. The CH aggregates the data and forwards it to
the CH of the upper layer. The process is repeated until the
sink node receives the location data. The data flow is as
shown in Fig. 1. When a task of discovering the group
relationships of objects is assigned, it is unnecessary to
transmit all the location data to the sink for postprocessing.
In our design, CHs collect the location data for a period and
generate location sequence data sets locally. Then, based on
the data sets, our mining algorithm tries to discover the
group relationships about the objects of interest.

Geometric models and symbolic models are widely used
to represent the location of objects [22]. A geometric location
denotes precise two-dimension or three-dimension coordi-
nates; while a symbolic location represents an area, such as
the sensing area of a sensor or a group of sensors, defined
by the applications. Since the accurate geometric location is
not easy to obtain, in this work, we employ a symbolic
model and take the sensors’ IDs as the locations of an object
of interest. Sensors are closely deployed to ensure complete
coverage of the monitored area, but this causes consistency
and redundancy problems. Techniques like the Received
Signal Strength (RSS) [29] simply estimate an object’s
location based on the ID of the sensor with the strongest
signal and eliminate unnecessary transmissions. The trajec-
tory of a moving object is thus modeled as an ordered
sequence of sensor IDs, i.e., a location sequence denoted by
s ¼ �0�1...�l�1, where �i 2 � and l is the sequence length.

2.3 Variable Length Markov Model (VMM) and
Probabilistic Suffix Tree (PST)

If the movement of an object is regular, the object’s next
location can be predicted based on its preceding locations.
We leverage the temporal-and-spatial correlations of the
moving object and use a VMM to model the statistics.
Under this model, an object’s movement is modeled by the
conditional probability distribution over � for a given
location sequence data set. Specifically, for a location
sequence s over � and a symbol � 2 �, P ð�jsÞ is the
conditional probability that � will follow s. The length of s
is floating, which provides the flexibility to adapt to the
variable length of movement patterns.

Among many implementations of VMM, PST [40] has the
lowest storage requirement [25]. The PST building algorithm1

extracts significant patterns from a data set, prunes unneces-
sary nodes during tree construction, and then generates a
PST. Each node in the tree is labeled by a string s, which
represents a significant pattern with occurrence probability
above the minimal threshold Pmin. Each node carries the
conditional empirical probabilities, i.e., P ð�jsÞ, for every
� 2 �, and the maximal length of s is specified by Lmax. For
example, as shown in Fig. 2, nodejf is a child of nodef with
respect to symbol j. It represents a significant pattern with
s ¼ 00jf 00, whose occurrence probability is above 0.01. The
conditional empirical probabilities are P ð0b0j00jf 00Þ ¼ 0:33,
P ð0e0j00jf 00Þ ¼ 0:67, and P ð�j00jf 00Þ ¼ 0 for the other � 2 �.

The PST algorithm has an excellent capacity for extract-
ing structural information from sequences. Its low complex-
ity, i.e., OðlÞ in both time and space [7], makes it more
attractive to be used in streaming or resource-constrained
environments. Compared with algorithms that mine all
accurate frequent patterns, the compact tree structure and
the controllable size of a PST are particularly useful in
resource-constrained environments. For example, if the
conditional probabilities of a pattern “ABCD” are similar
to those of “BCD,” PST will only store “BCD.” Moreover,
PST is efficient in predicting the occurrence probability of a
sequence or predicting the next symbol of a sequence. The
occurrence probability of a sequence s regarding to a PST T ,
denoted by PT ðsÞ, is the prediction of the occurrence
probability of s based on T . For example, given a PST T , as
shown in Fig. 2, the occurrence probability PT ð00nokjfb00Þ is
computed as follows:

PT ð00nokjfb00Þ ¼ PT ð00n00Þ � PT ð0o0j00n00Þ � PT ð0k0j00no00Þ
� PT ð0j0j00nok00Þ � PT ð0f 0j00nokj00Þ
� PT ð0b0j00nokjf 00Þ
¼ PT ð00n00Þ � PT ð0o0j00n00Þ � PT ð0k0j00o00Þ
� PT ð0j0j00k00Þ � PT ð0f 0j00j00Þ � PT ð0b0j00okjf 00Þ
¼ 0:05� 1� 1� 1� 1� 0:33

¼ 0:0165:

For a given sequence s and a PST T , our predict_next
algorithm2 outputs the next most likely symbol �. We
explain the algorithm by an example to demonstrate the
efficiency of the algorithm. Given a sequence s ¼ 00nokjf 00

TSAI ET AL.: MINING GROUP MOVEMENT PATTERNS FOR TRACKING MOVING OBJECTS EFFICIENTLY 269

Fig. 1. (a) The hierarchical and cluster-based network structure and the
data flow of an update-based tracking network. (b) A flat view of a two-
layer tracking network. Fig. 2. The movement of an object and its PST.

1. Given in Appendix 1, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TKDE.2009.202.

2. Given in Appendix 2, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TKDE.2009.202.



and a PST T , as shown in Fig. 2, the predict_next algorithm
traverses T to the deepest node nodeokjf based on s. The
path includes noderoot, nodef , nodejf , nodekjf , and nodeokjf .
Finally, symbol 0e0, which has the highest conditional
empirical probability in nodeokjf , is returned as the most
probable next symbol. Since the algorithm’s computational
overhead is limited by the height of a PST, it is suitable for
sensor nodes. Further details about the PST building
algorithm and related discussions about parameter setting
can be found in [9], [27]. The notations and key symbols
used in the paper are listed in Table 1.

3 DESIGN OF THE DISTRIBUTED MINING ALGORITHM

In this work, we model the movement of an object by a
VMM, and use a PST to mine the significant movement
patterns. The advantages of PST include its computing and
storage efficiency as well as the information it carries. In the
tracking application, objects are tracked periodically so that
the time interval of consecutive items of a location sequence
is implied. The PST building algorithm scans the sequence
for significant movement patterns, whose items are con-
strained to be consecutive in the location sequence. This is
also why the computing cost is much lower than sequence
pattern mining. Moreover, a PST provides us important
information in similarity comparison. For a pattern and a
PST, we can predict the occurrence probability of the
pattern, which is viewed as the importance of the pattern
regarding the PST.

A set of moving objects is regarded as belonging to the
same group if they share similar movement patterns. In this
section, we first propose a new similarity measure to define
the pairwise similarity of moving objects. The advantages of
the new proposed similarity measure simp include its
efficiency and its accuracy. First, simp compares the
similarity of two objects based on their significant move-
ment patterns instead of their entire location sequences. In
[54], a variation of PST, named emission tree, is used to
train the patterns in a streaming environment. simp can be
directly applied to the mature nodes of two emission trees,
instead of all nodes. Thus, simp can provide efficiency for
the applications with evolving and evolutionary similarity
relationships.3 Second, it considers the importance of each
movement pattern regarding to each individual object so
that it achieves better accuracy in similarity comparison.

With the definition of simp,
4 two objects are similar if

their similarity score is above a minimal threshold. A set of
objects is regarded as a group if each object is similar to at
least half the members of the same group. To tackle the
problem of discovering groups of moving objects, we
propose a distributed mining algorithm comprised of a
GMPMine algorithm and a CE algorithm as shown in Fig. 3.
The GMPMine algorithm uses a PST to generate the
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TABLE 1
Description of the Notations and Key Symbols

Fig. 3. The framework of our distributed mining algorithm: At the local end, CHi performs the GMPMine algorithm to generate local grouping result Gi

while the sink performs the Cluster Ensembling algorithm to combine the local grouping results into a consensus final result G�0 .

3. Discussion about continually refining of a PST is given in Appendix 3,
which can be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2009.202.

4. The definition is given in Section 3.1.



significant movement patterns and computes the pairwise
similarity of moving objects by using simp. It utilizes the
HCS algorithm to cluster the moving objects into non-
overlapped groups. To address the energy consumption
problem in WSNs, our algorithm only transmits the local
grouping result Gi to the sink. For K clusters, at most K
vectors whose dimension is equal to the number of objects
are transmitted. The sink then applies the CE algorithm to
combine the local grouping results. The CE algorithm
utilizes the Jaccard similarity coefficient to measure the
similarity between a pair of objects, and normalized mutual
information (NMI) to derive the final ensembling result G�0 .

When the group information of moving objects in a
specified subregion is of interest, our design can be easily
extended to emphasize the importance of specified areas. It
can also combine local grouping results from sensor clusters
with heterogeneous tracking configurations, such as differ-
ent monitoring intervals, or different network structures of
sensor clusters, which can reduce the tracking costs. For
example, instead of waking up all sensors at the same
frequency, a shorter tracking interval is specified for some
types of terrain, such as gorges, in the migration season to
reduce energy consumption. Rather than deploying the
sensors in the same density, they are only highly concen-
trated in areas of interest in order to reduce deployment
costs. In contrast to other clustering algorithms, such as K-
means, which partition objects into a predetermined
number of groups, we consider the diversity of the number
of groups and their sizes in the tracking applications. In
addition, we trade off the grouping quality against the
computation cost by adjusting the partition parameter of
the CE algorithm.

3.1 Similarity Measurement

In this work, we use a PST to mine significant movement
patterns of an object, where a significant movement pattern
is a subsequence with occurrence probability higher than a
minimal threshold. Each node of a PST represents a
significant movement pattern and carries its conditional
probabilities, and all nodes of a PST provide the precise
information about the predicted occurrence probability of a
given pattern.

To provide better discrimination accuracy, we propose a
new similarity measure simp that adequately and skillfully
utilizes the information carried by PSTs to measure the
similarity of two objects. The design concepts of simp are
simple and useful. Different from the previous works, such
as [19], that equal weights the patterns, we further consider
importance and difference of a pattern related to each
individual object. The importance of a pattern s is modeled
by using the predicted occurrence probability, i.e., PT ðsÞ,
while the difference of a pattern is defined over all of the
dimensions, i.e., PT ð�jsÞ, 8� 2 �. Based on the two
concepts, we define the distance a pattern s associated
with two objects oi and oj as

dðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
�2�

ðPTiðs�Þ � PTjðs�ÞÞ2
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
�2�

ðPTiðsÞ � PTið�jsÞ � PTjðsÞ � PTjð�jsÞÞ2;
r ð1Þ

where Ti and Tj are their respective PSTs. dðsÞ is the
euclidian distance of products of the importance and
difference over � related to oi and oj. Note that since the
similarity of two objects is symmetric in our applications, a
symmetric measure, such as euclidean distance, is more
desirable. Furthermore, for a pattern s 2 Ti, PTiðsÞ is a
significant value because the occurrence probability of s is
higher than the minimal support Pmin. If oi and oj share the
pattern s, we have s 2 Ti and s 2 Tj, respectively, such that
PTiðsÞ and PTjðsÞ are non-negligible and meaningful in the
similarity comparison. Thus, we define the similarity score
of oi and oj by using all of their significant movement
patterns as follows:

simpðoi; ojÞ ¼ �log
P

s2eS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

�2� ðP
Tiðs�Þ � PTjðs�ÞÞ2

q
2Lmaxþ

ffiffiffi
2
p ; ð2Þ

where eS denotes the union of significant movement
patterns (nodes) of both objects (trees). We sum dðsÞ for
all s 2 eS as the distance between two PSTs and normalize it
by its maximal value, i.e., 2Lmax þ

ffiffiffi
2
p

. For example, the
PSTs shown in Fig. 4 are built for two sequences 00aa . . . a00

and 00bb . . . b00 with � ¼ 0, r ¼ 1, and Lmax ¼ 3. The distance
between two PSTs is 6þ

ffiffiffi
2
p

, where eS ¼ f00a00; 00aa00; 00aaa00;
00b00; 00bb00; 00bbb00g. Thereafter, we take the negative log of the
distance between two PSTs as the similarity score such that
a larger value of the similarity score implies a stronger
similar relationship, and vice versa.

The worst-case complexity of computing simp is
OðLmax � j�j � jeSjÞ. Therefore, the complexity of building
a PST and scoring the similarity between two PSTs is
OðLmax � j�j � jeSj þ lÞ, where l is the sequence length.

3.2 The GMPMine Algorithm

We now describe the GMPMine algorithm, which identifies
groups of objects and determines their movement patterns.
Fig. 5 illustrates the GMPMine algorithm, where bS
represents the location sequence data set and N denotes
the number of objects of interest. The minimal similarity
threshold (simmin) is the lower limit of the similarity
between two objects belonging to the same group. Let O ¼
fo0; o1; . . . ; oN�1g denote the objects of interest and �ðoiÞ
denote the mapping of the group ID and object oi. The
GMPMine algorithm generates the grouping result G and
the associated group movement patterns GT . Specifically, G
is composed of m disjoint groups of objects over O, denoted
by G ¼ fg0; g1; . . . ; gm�1g, where gi ¼ fojj�ðojÞ ¼ i; oj 2 Og.
The group movement patterns associated gi is denoted by
GTi, and GT ¼ fGT0; GT1; . . . ; GTm�1g denotes the group
movement patterns for the m groups.

The GMPMine algorithm is comprised of four steps.
First, we extract the movement patterns of each object from
the location sequence. Second, we construct a similarity
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Fig. 4. The maximal value of
P

s2eS dðsÞ of the two PSTs is 6þ
ffiffiffi
2
p

.



graph in which similar objects are connected by an edge.

Third, we extract highly connected components to derive

the group information. Fourth, we construct a group PST

for each group in order to conserve the memory space. In

the next section, we describe the steps in detail.

3.2.1 Building PSTs for All Objects

In this step, we learn the movement patterns and construct

a PST for each object. As shown in Lines 3 and 4 of Fig. 5, for

the location sequence data set with N location sequences,

we compute the movement patterns and generate N PSTs.

For example, Fig. 6a shows the trajectories of three groups,

each of which contains four objects. The mesh network is a

two-layer structure with four clusters, each containing four

sensors labeled as � ¼ fa; b; c; dg. The location sequence

data set of CHa is shown in Fig. 6b. With the PST parameter

setting (0.01, 0, 0.0001, 1.3, 5), we show the PSTs of objects

o4, o5, o8, and o9 in Fig. 7 for example.

3.2.2 Constructing a Similarity Graph Based on PSTs

In this step, we compute the similarity of two objects based

on their PSTs by using simp. We compute the similarity

score for each pair of objects and construct an unweighted,

undirected similarity graph GðV ;EÞ (Lines 6-9). A vertex in

GðV ;EÞ corresponds to an object, and an edge between two

objects indicates that their similarity score is above the

predefined threshold simmin. Hence, we transform the
problem into a graph partition problem.

Let us consider the PSTs of objects o4, o5, o8, and o9

shown in Fig. 7. According to (2), the similarity score is
approximately 1.618 for o4 and o5, 1.067 for o4 and o9, and
1.832 for o8 and o9. With simmin ¼ 1:2, we can infer that o4

and o5 as well as o8 and o9 are similar. Then, we construct
the similarity graph, as shown in Fig. 7e.

3.2.3 Extracting Highly Connected Subgraphs

In this step, we partition the similarity graph to generate the
grouping result. The properties of the HCS algorithm [21]
make it suitable for use in our tracking applications. First, it
derives group relationships based on the graph’s connec-
tivity without any parameter tuning. Second, the output
subgraphs do not need to have the similar number of nodes.
Third, the algorithm’s polynomial complexity is low, so it is
efficient in practice. For the details of HCS, please refer to
[21]. As shown in Line 11 of Fig. 5, our algorithm partitions
the similarity graph GraphðV ;EÞ and generates the group-
ing resultG. After that, the CH represents the local grouping
result by the vector f�ðo0Þ; �ðo1Þ; �ðo2Þ; . . . ; �ðoN�1Þg and
sends it to the sink node. For the example shown in Fig. 7e,
the clustering result is shown in Fig. 7f and the vector is f�1;
�1;�1;�1; 1; 2; 2; 2; 0; 0; 0;�1g. Note that �ðoiÞ ¼ �1 indi-
cates that the CH does not have enough information to
group oi, so the group relationship of oi is unknown.

3.2.4 Constructing a Group Probabilistic Suffix Tree

The above steps extract the group information and object
movement patterns. In this step, we retain the most
representative PST of a group of objects for storage efficiency.
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Fig. 6. An example of (a) trajectories of 12 moving objects, and (b) the
collected location sequence data set at CHa.

Fig. 7. PSTs of o4, o5, o8, and o9 over � ¼ fa; b; c; dg and the grouping result at CHa. (a) PST of o4. (b) PST of o5. (c) PST of o8. (d) PST of o9.
(e) Similarity graph. (f) Highly connected subgraphs.

Fig. 5. The GMPMine algorithm.



Let S0/T 0 denote the set of location sequences/PSTs of the
objects in gi. The formula for selecting the best group PST,
GTi, for gi is expressed as GTi ¼ argmaxTj2T 0

P
s2S0 P

TjðsÞ.
Note that the probability PT ðsÞwill be higher if a sequence s
implicitly shares more similar patterns with T . Therefore, we
choose the PST with the largest aggregate probability for a
group of objects (Lines 13-16 in Fig. 5).

3.3 The CE Algorithm

In the previous sections, each CH collects location data
locally and generates group information with the proposed
GMPMine algorithm. Since objects may not pass through all
the clusters, and the group relationships of objects may vary
in different areas, the local grouping results may be
inconsistent. For example, if objects walk close together
across a canyon, it is reasonable to consider them a group.
In contrast, objects scattered in grassland is hardly
identified as a group. Furthermore, in the case where a
group of objects move across the margin of a sensor cluster,
the group relationship is difficult to determine. Therefore,
we propose using the CE algorithm to combine multiple
local grouping results. The algorithm solves the inconsis-
tency problem and improves the grouping quality.

The ensembling problem involves finding the partition
of O that contains the most information about the local
grouping results. Let C denote the ensemble of the local
grouping results, represented as C ¼ fG0, G1; . . . ; GK�1g,
where K denotes the ensemble size, i.e., the total number of
CHs. The local grouping result Gi obtained from CHi is a
partition of O with mi disjoint groups, represented as
Gi ¼ fgi0, gi1; . . . ; gimi�1g. Similar to Strehl and Ghosh [46]
and Fred and Jain [16], we utilize NMI to evaluate the
grouping quality. The mutual information of Gi and Gj is a
measure of the amount of information shared by the two
results [14]. It is calculated by

MIðGi;GjÞ ¼
Xmi�1

a¼0

Xmj�1

b¼0

bP ða; bÞ log
bP ða; bÞbP ðaÞ � bP ðbÞ ;

where bP ðaÞ denotes the probability function ofGi, defined as

bP ðaÞ ¼
��gia��
jOj ;

and bP ða; bÞ is the joint probability distribution function of
Gi and Gj, defined as

bP ða; bÞ ¼
��gia \ gjb��
jOj :

The normalized version of the mutual information of Gi and
Gj, denoted by NMIðGi;GjÞ, is formulated by

NMIðGi;GjÞ ¼

Pmi�1
a¼0

Pmj�1
b¼0

bP ða; bÞ log
bP ða;bÞbP ðaÞ�bP ðbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HðGiÞ �HðGjÞ
p ; ð3Þ

where HðGiÞ is the entropy of Gi, which is a measure of the
amount of information in Gi, defined by HðGiÞ ¼Pmi�1

a¼0 �bP ðaÞ � log bP ðaÞ. Note that a low NMI value
indicates that two distributions only have a random
association, whereas a higher value indicates that they are

mutually informative. For a probable ensembling result G,
the summation of NMIs of G and every Gi 2 C represents
the amount of information that G contains with respect to
C. Therefore, the ensembling result G0 that contains the
most information about C is given by

G0 ¼ argmax
G2eG

XK�1

i¼0

NMIðGi;GÞ; ð4Þ

where eG denotes all possible ensembling results. However,
enumerating every G 2 eG in order to find the optimal
ensembling result G0 is impractical, especially in resource-
constrained environments. To overcome this difficulty, we
propose the CE algorithm detailed in Fig. 10. The algorithm
leverages the information in C to generate the ensembling
result G�0 , and trades off the grouping quality against the
computation cost by adjusting the partition parameter D,
i.e., a set of thresholds with values in the range ½0; 1�. A finer
grained configuration of D achieves a better grouping
quality, but the penalty is a higher computation cost.

The proposed CE algorithm is comprised of three steps.
First, it utilizes the Jaccard similarity coefficient to measure
the similarity of each pair of objects. Second, it partitions the
objects for every � 2 D; and third, it employs NMI to
optimize the ensembling result. In the following, we
describe the three steps in detail.

In the first step, the algorithm measures the similarity of
each pair of objects to construct a similarity matrix based on
the local grouping results, as shown in Lines 5-7 of Fig. 10.
In tracking applications, the trajectories of moving objects
span multiple sensor clusters, i.e., moving objects are
present in partial sensor clusters and absent from the
others. Hence, counting the absence of both objects in a pair
makes no meaningful contribution to the similarity mea-
surement. To address this issue, we utilize the Jaccard
similarity coefficient [43] to incorporate the opinions of the
CHs whose opinions are known, i.e., �ðoiÞ 6¼ �1, when
measuring the similarity between a pair of objects. The
Jaccard similarity coefficient, which compares the similarity
between two binary vectors, is widely used in information
retrieval applications where the importance of positive and
negative opinions is asymmetric [11]. The metric is more
objective and reasonable for our applications than other
measures, such as the simple matching coefficient and the
overlap coefficient [39]. Let �kðoiÞ denote the mapping of
the local group ID and oi obtained from CHk; and let
IkðoiÞ ¼ 1 indicate that �kðoiÞ 6¼ �1. The group relationship
of oi and oj in Gk, denoted by ckðoi; ojÞ, represents that
objects oi and oj belong to the same group in Gk; i.e.,

ckðoi; ojÞ ¼
1; if �kðoiÞ ¼ �kðojÞ 6¼ �1;
0; else:

�

For an ensemble of local grouping results C, we define the
Jaccard similarity coefficient of oi and oj, denoted by Sij, as
the proportion of local grouping results that contain oi and
oj and belong to the same group, where

Sij ¼
PK�1

k¼0 ckðoi; ojÞPK�1
k¼0 IkðoiÞ þ

PK�1
k¼0 IkðojÞ �

PK�1
k¼0 ckðoi; ojÞ

: ð5Þ
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Note that the denominator is the number of local grouping
results in which oi or oj belongs to some group. Using (5),
we compute Sij for each pair of objects and construct a
similarity matrix SM, where SM½i; j� ¼ Sij and Sij 2 ½0; 1�.
Next, we give an example to illustrate the advantage of our
approach. Fig. 8a shows the inconsistency among the local
grouping results C ¼ fGa, Gb, Gc, Gdg while Fig. 8b shows
the similarity matrix calculated according to (5). Obviously,
the coefficients of objects in the same group are different
from that in different groups. In addition, Figs. 8c and 8d
show that the simple match coefficient underestimates the
objects’ correlations and the overlap coefficient overesti-
mates the correlations so that they cannot correctly cluster
the objects with a threshold in this example.

In the second step, based onSM, the algorithm generates a
partitioning result G�, and derives an unweighted, undir-
ected graph for each � 2 D as follows: For each Sij in SM, if
Sij > �, the algorithm adds an edge between oi and oj to the
similarity graph GðV ;EÞ, as shown in Line 10. It then
partitions the graph to generate a partitioning result G� by
HCS (Line 11). In Fig. 8, we set D ¼ f i10 j1 � i � 5g and
compute the summation of NMIs ofG� for every � 2 D. Fig. 9a
shows the similarity graph � ¼ 0:1, and Fig. 9b shows the HCS
partitioning result.

In the final step, the algorithm uses NMI to select the
ensembling result G�0 . For a set of thresholds D, we rewrite
the expression in (4) as follows:

G�0 ¼ argmax
�2D

XK�1

i¼0

NMIðGi;G�Þ:

As a result, we can calculate the total information of G� with
respect to C, i.e.,

PK�1
i¼0 NMIðGi;G�Þ, for every � and choose

the G� that contains the most information about C as G�0

(Lines 13-15). For example, Fig. 9c shows the table of the
partition results and the summation of their NMIs for every

� 2 D. The final ensembling results of the simple match
coefficient and overlap coefficient are ff4; 5; 6; 7g; f8; 9; 10gg
and ff0; 1; 2; 3g; f5; 6; 7g; f8; 9; 10; 11gg, respectively. In con-
trast, our algorithm generates the best solution G0:3 ¼
ff0; 1; 2; 3g; f4; 5; 6; 7g; f8; 9; 10; 11gg, which is identical to
the input workload. This demonstrates the effectiveness of

using the Jaccard coefficient in our approach.
The sink node uses the CE algorithm to combine the local

grouping results. It then assigns a global group ID to each

group and sends the group information to the CHs for
subsequent collection of the location data.

4 ENERGY EFFICIENT OBJECT TRACKING SENSOR

NETWORK (OTSN)

WSNs designed for tracking the locations of moving objects

are called OTSNs. Conserving energy in OTSNs is more
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Fig. 9. An example of (a) a similarity graph (� ¼ 0:1) and (b) its partition result: highly connected subgraphs (� ¼ 0:1). (c) The ensembling results for a
set of thresholds D ¼ f0:1; . . . ; 0:5g.

Fig. 8. (a) An example of four local grouping results and three similarity matrices for (b) Jaccard coefficient, (c) simple match coefficient, and (d) overlap

coefficient (the simple math coefficient is defined by Ssij¼
PK�1

k¼0
ckðoi;ojÞ
K and the overlap coefficient is defined by Soij¼

PK�1

k¼0
ckðoi;ojÞ

maxð
PK�1

k¼0
IkðoiÞ;

PK�1

k¼0
I
k
ðojÞÞ

).

Fig. 10. The Cluster Ensembling Algorithm.



difficult than in WSNs that monitor immobile phenomena,
such as humidity, vibrations, or sound, because the target
objects are moving. Hence, OTSNs require special con-
sideration and designs to track moving objects efficiently.
For example, in [42], [49], [51], [55], the speed and direction
of a moving object are estimated and use to reduce the
number of transmitted packets or to minimize the number
of “awake” sensors in wake-up scheduling. DCTC [57]
dynamically configures a convoy tree based on certain
trajectory prediction schemes to track a mobile target with
high tree coverage and low energy consumption. In STUN
[26], an efficient tree is built for tracking objects based on
the frequency of objects’ movements over a region. For in-
network object tracking, Tseng and coworkers [31] further
develop several tree structures that consider the physical
topology of the sensor network. All the above works exploit
the movement characteristics of a single moving object.

To design an energy-efficient OTSN, we leverage the
group information and the object movement patterns
derived in Section 3. In a conventional update-based OTSN,
sensors are assigned a tracking task, i.e., to update the sink
with the location data of moving objects at every tracking
interval. When a sensor detects an object of interest, it sends
an update packet upward to the sink. Since the sensing area
of sensors may overlap, a data aggregation step is required to
avoid making unnecessary location updates. For example, at
best, eight update packets passing through K layers to the
sink are required for an object that moves from sensor s1 to s8,
as shown in Fig. 11. Existing approaches employ techniques
like data aggregation or location prediction to reduce the
number or sizes of transmitted update packets [31], [42], [49].
In contrast, our tracking algorithm uses the group informa-
tion discovered by the proposed distributed mining algo-
rithm to further aggregate the location data of a group of
moving objects. Figs. 12a and 12b show an aggregation

scenario where a group ID, i.e., g0, replaces three object IDs in
the location update, and thus reduces the number of packets
as well as the packet sizes. To the best of our knowledge, very
few researchers have considered group relationships in
location data aggregation. In addition, our OTSN forms
Sensor Groups (SGs) distributedly to reduce the load on the
CHs and the in-network traffic. Adaptively adjusting the size
of an SG for a group of objects allows us to control the
overhead of forming the SG. Moreover, we employ location
prediction and data aggregation simultaneously. Our dis-
tributed mining algorithm generates the PSTs as prediction
models to suppress the location updates. In the following
sections, we discuss the design considerations in detail.
Because of space limitations, we only show the tracking
algorithm, and demonstrate our OTSN with an example in
Appendix 5, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2009.202.

4.1 Group Data Aggregation

In a conventional update-based OTSN, multiple sensors may
send readings to the CHs for the same object; thus, the CHs
aggregate the update packets to reduce unnecessary long-
distance transmissions. When tracking multiple moving
objects with the group characteristics, we can query multiple
objects and update their location data simultaneously. In our
design, the CHs perform group data aggregation as follows:
If multiple objects belong to the same group, the CHs
combine the location data of all the objects in a single packet
and substitute a group ID for the individual object IDs.
Specifically, we combine the location data of a group of
objects by using a triple (group ID, sensor ID, time stamp).
Fig. 13a shows an example where the number and size of
packets are reduced by applying group data aggregation.

We define the cost of transmitting a packet from a source
sensor to a target sensor by the distance between them,
where the distance is the hop count between the two
sensors. The transmission cost of an OTSN, denoted by TC,
is the average cost of sending the location data of an object
from a sensor to the sink, i.e., the hop count per update
packet. Let TCcu denote the transmission cost of a
conventional update-based OTSN, and let pg denote the
probability that a group of objects will be observed
simultaneously. The transmission cost of applying group
data aggregation, denoted by TCg, is expressed by

TCg ¼
TCcu�pg�mþ TCcu � ð1� pgÞ�N

N

¼ TCcu� 1� 1�m
N

� �
� pg

� �
;
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Fig. 11. An example of a conventional update-based OTSN with
K layers.

Fig. 12. An example of tracking a group of moving objects.
(a) Monitoring multiple objects, respectively. (b) Monitoring multiple
objects with group data aggregation.

Fig. 13. Examples of group data aggregation with (a) EB ¼ 0 and
(b) EB ¼ 1.



where m is the number of groups and N is the number of
objects. The saving is ðTCcu � TCgÞ=TCcu ¼ ð1� m

NÞ � pg.
For example, if pg ¼ 0:6, m ¼ 5, and N ¼ 50, the saving will
be 54 percent.

Since the accuracy of sensor networks is inherently
limited, allowing approximation of sensor readings is a
compromise [45]. We regulate the accuracy by an error
bound, defined as the maximal hop count between the real
and reported locations of an object. This improves energy
savings in two ways: it reduces the number of long-distance
transmissions, and it increases group data aggregation.
Fig. 13b shows an example of group data aggregation with
an error bound EB ¼ 1. We observe that the CH success-
fully reduces the number and size of the packets, even
when a group of objects is located by different sensors.

4.2 In-Network Data Aggregation

It has been shown that in-network data aggregation in
WSNs improves the scalability and reduces long-distance
communication demands, and thus saves energy. However,
the CHs performing data aggregation become hot spots.
Our OTSN distributedly forms a SG comprised of a set of
neighboring sensors to detect the location of an object and
trace a group of moving objects. The size of an SG is
determined by its radius, defined as the hop count between
the central sensor and the farthest sensors in the same SG.
We adaptively adjust the members of an SG in a distributed
manner as objects move. When a sensor detects an object, it
sends an invitation message to its nearby neighbors by
flooding. On receipt of the message, a neighbor joins the SG
and transmits its location data. If a neighbor receives
multiple invitations, it joins an SG randomly. The initial
sensor then combines the location data of multiple objects in
a single packet and forwards it to the CH. This is called in-
network data aggregation. Therefore, SGs reduce the
burden of CHs and reduce network traffic within a cluster.
Fig. 14 shows an example where network traffic is reduced
by applying in-network data aggregation. We observe that
two packets sent from sensors to the CH are eliminated at
the cost of short-distance query and response traffic.

Note that a sensor querying its neighbors to form an SG
by flooding generates more network traffic. However, with
group information, we can estimate the dispersion range of
a group of objects and choose a suitable SG size to limit the
cost of forming the SG. For an SG with radius R, the
flooding cost and the cost of sending the result to the CH is
dþ 4R� ðRþ 1Þ, where d is the average distance between a
sensor and its CH. On the other hand, the cost of collecting
location data without aggregation is estimated as Ni � d,
where Ni is the group size. If dþ 4R� ðRþ 1Þ is less than
Ni � d, then the in-network data aggregation is beneficial.
Therefore, our tracking algorithm can benefit from in-
network data aggregation when both the sizes of groups
and the size of sensor clusters are large.

4.3 PST Prediction

In the mining phase, our algorithm generates a PST for each
object or group of objects. In the tracking phase, we use the
PSTs as prediction models for location prediction. By using
the same model for the sink and the CH, our approach
reduces energy consumption. Specifically, it enables the CH
to avoid sending the updates for predictable locations
because the sink can recover the locations via the same
prediction model. When the CH fails in the location
prediction, an update packet is delivered to the sink to
correct the prediction. Fig. 15a shows an example of PST
prediction suppressing a location update, which is indi-
cated by the dashed line.

To evaluate the efficiency of PST prediction, we analyze
the transmission cost of the update-based OTSN with PST
prediction.

Assume K is the number of layers in the network
structure and each sensor cluster contains n� n sensors, the
total number of sensors in an update-based OTSN is n2K . In
addition, the number of layer-i nodes (clusters or sensors) is
n2i. Each sensor has a coordinate ðx; yÞ in a cluster, where
0 � x; y < n. The distance between a sensor and the CH in a
cluster is ðiþ jÞ � d, where d is the hop count between two
adjacent nodes. Note that communications between adjacent
nodes of layer-i must pass through all nodes in the lowest
layer between them. Thus, d of layer-i is nK�i. When a CH is
located in the bottom left-hand corner of a mesh network,
the cost of transmitting a packet between the CH and any
other sensors within the same cluster can be expressed by

DðiÞ ¼
Pn�1

x¼0

Pn�1
y¼0 ðxþ yÞ � nK�i

n2
¼ nK�i � ðn� 1Þ:
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Fig. 14. An example of in-network data aggregation.

Fig. 15. (a) An example of PST prediction where an update is eliminated. (b) An example of the best case of PST prediction.



In the worst case, where all predictions fail and all update
packets pass from the bottom layer to the sink, the
transmission cost _(denoted by TCworst) is the same as that
of the conventional update-based OTSN. We formulate this
scenario as TCworst ¼

PK
i¼1 DðiÞ ¼ nK � 1. In the best case,

where all predictions are correct, we only need to update
the location of a new object, as shown by the arrows in
Fig. 15b. For example, as a new object enters the range of s1

and the CHs on the path to the sink, a packet passing
through K layers is required to update the location
sequence data set at those CHs. When the object moves
from sensor s1 to s2, the latter only updates the location of
the object to its CH in layer K � 1, since the CH correctly
predicts the location and the sink recovers the location via
the same prediction model. In the best case, the transmis-
sion cost, denoted by TCbest, contains the product of the cost
and the number of arrows between layer-i� 1 and layer-i
for 1 � i � K. We formulate TCbest as follows:

TCbest ¼
PK

i¼1 DðiÞ � n
2i

n2K

¼
PK

i¼1 n
K�i�ðn� 1Þ � n2i

n2K
¼ n� 1

nK�1
:

ð6Þ

Equation (6) shows that a network structure with more
layers results in a lower TCbest cost. However, the best case
does not always hold. Besides, if a network structure has
more layers, there are probably more predictions; thus, the
overall prediction hit rate will be lower. Therefore, we need
to conduct more experiments to study the impact of the
network structure.

5 EXPERIMENTS

We implement an event driven simulator in C++ with SIM
[10] to evaluate the performance of our design. Since it is
difficult to obtain real location data, this study is based on
synthetic data only. In the experiments, we use the
Reference Point Group Mobility Model [23] to synthetically
generate location data, i.e., the coordinates ðx; yÞ, for a
group of objects. The location-dependent mobility model
[18] is used to simulate the roaming behavior of a group
leader. The other member objects are followers that are
uniformly distributed within a specified group dispersion
radius (GDR) of the leader, where the GDR is the maximal
hop count between the followers and their leader. We
utilize the GDR to control the dispersion degree of the
objects. A smaller GDR implies stronger group relation-
ships, i.e., objects are closer together. In addition, we control
the movement range of a group of objects by using the
movement distance (d), which is the linear distance between
the starting point and the furthest point reached by the
leader object. A longer distance implies that objects move
across more sensor clusters. To ensure our simulation
reflects the real-world scenarios, we input objects with a
random-walk model. In the following sections, we first
study the effectiveness of our distributed mining algorithm,
and then demonstrate the efficiency of our OTSN.

5.1 Effectiveness of the Distributed Mining
Algorithm

To study the effectiveness of our distributed mining
algorithm, we conduct six experiments as follows: First,

we inspect the impacts of the group number (m), the SG
radius (R), and the movement distance (d) on the grouping
quality.5 Then, we study the influence of the location-
dependent GDR on the grouping quality and conduct a
case study to show that comparing the similarity on the
entire trajectories by using average euclidean distance may
not reveal the local group relationships. Finally, we
investigate the discrimination ability of the new proposed
similarity measure simp.

In the following experiments, we assume a 16� 16 mesh
network of a two-layer structure, i.e., it is composed of
16 clusters, each of which has 16 sensors. There are
m groups of objects and Nr random-walk objects walking
in the mesh network, where Nr is equal to the total number
of objects of the m groups. The size of each group is
uniformly distributed between 5 and 15. The speed of the
objects is 1 sensor per time unit, and the tracking interval is
0.5 time units. The default values ofEB, Lmax, d, andR are 0,
6, 12, and 0, respectively. We set the PST parameters
ðPmin; �; �min; rÞ ¼ ð0:01; 0; 0:0001; 1:2Þ empirically. To eval-
uate the grouping quality, we take the NMI of the
ensembling result G�0 and the input workload Ginput as the
external evaluation metric. Note that a higher NMI value
indicates better grouping quality.6

In the first experiment, we compare the grouping quality
and the transmission costs of our distributed approach
(denoted by DGMP) with a vector-based K-means approach
(denoted by VK)7 [19]. The GDR varies from 0.1 to 1.0 while
m is uniformly selected between a and b, where ða; bÞ are set
to ð10; 20Þ; . . . , and ð40; 50Þ. The parameter k representing
the specified cluster number of the K-means algorithm is set
to aþb

2 . Fig. 16a shows a decreasing trend in the NMI values
of DGMP and VK as the GDR increases. When the GDR is
less than 0.4, our approach clusters the patterned objects
exactly and filters out most random-walk objects. The
grouping quality decreases to 0.8 as the GDR approaches 1.
In contrast, the NMI of VK is less than 0.7 even when the
GDR is small. This is because the clustering result of the K-
means algorithm is sensitive to the seed selection and the
parameter k. Note that the number of unfiltered random-
walk objects increases with Nr. These objects often do not
belong to any group, or they belong to small groups with
two or three members that can be removed by postproces-
sing. In real-world applications, there may be some
unwanted objects that are viewed as outliers, e.g., objects
with random-walk movements. To remove a type of
outliers, we first train a PST of a sample object of this type
and then remove the objects that are similar to it. Through
this approach, we prune the similarity graph and thereby
reduce the clustering cost.

When the grouping results of DGMP and VK are utilized
in our group data aggregation technique to reduce the
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5. Due to the page limit, we discuss the impact of Lmax in Appendix 6,
which can be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2009.202.

6. For example, given Ginput ¼ ff0; 1; . . . ; 4g; f5; 6; . . . ; 9g; f10; 11; . . . ;
14g; f15; 16; . . . ; 19g; f20; 21; . . . ; 24gg, the NMI of the result {{1, 2, 3}, {6, 8,
9}, {21, 22, 23, 24}}, Ginput is 0.56; and the NMI of the result {{0, 1, 2, 3, 4}, {5, 7,
9}, {10, 11, 12, 13, 14}, {15, 17, 18, 19}, {20, 23, 24}} and Ginput is 0.8.

7. Instead of using sequential patterns, we generate a vector for each
object by projecting its sequence into the feature domain of the significant
movement patterns of all objects.



transmission cost, Fig. 16b shows that the average hop count
per update of DGMP is lower than VK. The is because DGMP
provides accurate group information so that more update
packets are aggregated. Compared with the case with no
group data aggregation (denoted by CU), about 50 percent of
the transmission cost of DGMP is reduced when the GDR is
below 0.5.

In the second experiment, since objects may be more
widely distributed, we investigate the influence of the size
of SGs (R) on the grouping quality. For a specified SG
radius, we report the ID of the central sensor of the SG as
the location of each captured object. Fig. 16c shows that the
NMI increases with R, especially when the GDR is large.
This experiment shows that if objects are more widely
distributed, we can adaptively specify a larger size of SGs to
improve the clustering quality.

In the third experiment, we study the impact of moving
distance (d). When objects travel over a larger range, they
are likely to move across more clusters; hence, more CHs
report grouping results. In other words, more CHs
participate in deciding the group relationships. Fig. 16d
shows that the NMI increases when the distance is larger.
The result shows that the CE algorithm effectively improves
the grouping quality.

In the fourth experiment, we investigate the influence of
the location-dependent GDR, i.e., the trajectories with
varying GDR in regions, and compare with VK and an
approach with only the GMPMine algorithm (denoted by
GMP). In this experiment, clusters are divided into two
types: a vague cluster with GDR ¼ 2:0 represents a region
where a group of objects locate widely while a distinct
cluster with GDR ¼ 0:5 represents a region where objects
stay closely. We select the vague clusters randomly and vary
the number of vague clusters from 0 to 16. Fig. 16e shows
that when the number of vague clusters increases, the curve
of DGMP degrades smoothly while that of GMP degrades
significantly. Since DGMP uses the local grouping results
from distinct clusters to discover the group relationships, it
provides better stability than VK and GMP. On the other

hand, VK is not sensitive to the number of vague clusters.
This is because VK compels to cluster each object while
DGMP and GMP leave alone those objects without distinct
group relationships.

In the fifth experiment, we conduct a case study to
compare our approach with a euclidean approach that takes
the average euclidean distance of entire trajectories as the
similarity measure and applies HCS [21] to cluster objects.
Assume that moving objects migrate through a passage
with coordinates ð4; 4; 12; 8Þ between two grasslands with
coordinates ð0; 0; 4; 12Þ and ð12; 4; 16; 16Þ, respectively. The
movements of objects in the grasslands are modeled by
random walk while the trajectories in the migration passage
are modeled by the location-dependent mobility model. We
vary the duration (Dr) that objects stay in grasslands.
Fig. 16f shows that the NMI of euclidean degrades as Dr
increases. This is because groups of objects stay closely in
the passage and a group of objects spread widely at
grassland so that the average euclidean distance of
trajectories of two objects in the same group approaches
that of two objects in different groups as Dr increases. In
contrast, although the group relationships in the grasslands
are vague, our approach uses on the local grouping results
in the migration passage to discover the group relation-
ships. Therefore, our approach is able to achieve better
grouping quality in this case.

Last, we study the discrimination ability of simp and
compare with sims [53]. sims is a similarity measure
between a sequence s and a PST T , defined as

simsðs; T Þ ¼
Yl�1

i¼0

PT ð�ij�0 . . .�i�1Þ
PT ð�iÞ

;

where l is length of s. To compare the similarity of two
objects by using sims, we take the sequence of one object and
the PST of the other as the input. Assume there are 10 groups
of objects walking in a one-layer 16� 16 mesh network. We
compute the simp and sims of the objects in the same group
as well as that of the objects in the different groups. Since
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Fig. 16. The simulation results of the distributed mining algorithm. (a) Impact of the number of groups. (b) Comparison of DGMP and VK on TC.
(c) Impact of the SG radius (m ¼ 10). (d) Impact of the moving distance (m ¼ 10). (e) Impact of the location-dependent GDR (m ¼ 10).
(f) Comparison of DGMP and euclidean+HCS (m ¼ 10, GDR ¼ 0:5).



sims overflows quickly, we use log of sims instead. Figs. 17a
and 17b show that simp and sims effectively differentiate
objects in the same group (intragroup) and objects in
different group (intergroup), where the y-error bars repre-
sent the standard deviation. As the GDR increases, the curve
of sims of intragroup approaches that intergroup quickly
while the curve of simp of intergroup approaches the curve
of intragroup smoothly. We use simp and sims with minimal
threshold 4.5 and 1,500, respectively, in our GMPMine
algorithm to cluster objects. Fig. 17c shows that simp

achieves higher NMI than sims.

5.2 Efficiency of the Proposed OTSN

To evaluate the efficiency of the proposed OTSN, we
investigate the impacts of the network structure, accuracy
error bound (EB), and SG radius (R) as GDR varies. To the
best of our knowledge, few researchers have considered
group relationships in location data aggregation. Therefore,
we only compare our design with a conventional update-
based OTSN with a naive data aggregation technique
(denoted by CU). In the following experiments, we assume
that there are five groups of objects, each of which contains
five objects, walking in a mesh network composed of
65,536 sensors.

First, we study impact of the network structure on the
transmission cost. The sensors are configured in three
network structures, i.e., K ¼ 2, 4, and 8. Fig. 18a shows that
when the group relationships of moving objects exist, the
proposed OTSN outperforms CU. Compared with CU, at
least 42 percent of the TC is reserved when K ¼ 2 and the
GDR is less than 1. In addition, the curve of K ¼ 2 is close
to that of K ¼ 4 and both K ¼ 2 and K ¼ 4 outperform
K ¼ 8. Fig. 18b shows the prediction hit rates of the three
network structures degrade as GDR increases. Since the
leader object’s movement path together with the GDR sets
up a spacious area where the member objects are randomly

distributed, a larger GDR implies that the location
sequences have higher entropy, which degrades both the
prediction hit rate and the transmission cost. We find the
prediction hit rate of K ¼ 2 is higher than that of K ¼ 4;
however, the TCs of K ¼ 2 and K ¼ 4 are similar. This is
because that the larger cluster size of K ¼ 2 generates more
in-network traffic and thus counteracts the advantage of its
higher prediction rate.

As mentioned earlier, approximating the readings of
sensors is a compromise to reduce the number of long-
distance transmissions and increase group data aggrega-
tion. In the second experiment, we study the impact of the
SG radius on the transmission cost. Fig. 18c shows that by
tolerating a lower accuracy with EB ¼ 1, 44 percent of the
TC is reduced as GDR ¼ 2:5. (Note that in this experiment,
we set the SG radius accordingly, i.e., R ¼ EB.)

Although in-network data aggregation makes a smaller
contribution than PST prediction and group data aggrega-
tion, it is worth investigating because, in some applica-
tions, in-network traffic dominates the total network traffic.
For example, in a warning system where a warning
message is only necessary while an object is outside a
specified area, the in-network traffic generated to report
the location of the object is greater than the internetwork
traffic. Hence, we study the effectiveness of in-network
data aggregation in the last experiment. Fig. 18d shows
that in-network data aggregation helps reduce the in-
network traffic by about 20 percent when GDR ¼ 2:5.
Moreover, when the GDR is large, adaptively choosing a
larger radius to form a larger SG can reduce the in-network
traffic by 44 percent.

6 CONCLUSIONS

In this work, we exploit the characteristics of group
movements to discover the information about groups of
moving objects in an OTSN. In contrast to the centralized
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Fig. 18. (a) Transmission cost (EB ¼ 0) and (b) prediction hit rate (EB ¼ 0) of our OTSN for the three structures (m ¼ 5, nr ¼ 0). (c) The impact of
accuracy (K ¼ 2) and (d) the transmission cost of in-network data aggregation (EB ¼ 0, K ¼ 2).

Fig. 17. Comparison of similarity measures simp and sims. (a) Discrimination ability of simp. (b) Discrimination ability of sims. (c) Comparison of
GMP with simp and with sims.



mining technique, we mine the group information in a
distributed manner. We propose a novel mining algorithm,
which consists of a local GMPMine algorithm and a CE
algorithm, to discover group information. Our algorithm
mines object movement patterns as well as group informa-
tion and the estimated group dispersion radius. Other than
clustering trajectories, we can apply the distributed cluster-
ing approach to heterogeneous and distributed sequential
data sets, such as web logs or gene sequence. Using the
mined object movement patterns and the group informa-
tion, we design an energy-efficient OTSN. The contribution
of our approach is threefold: 1) it reduces energy
consumption by allowing CHs to avoid sending the
prediction-hit locations, because the locations can be
recovered by the sink via the same prediction model; 2) it
leverages group information in data aggregation to elim-
inate redundant update traffic; and 3) it sets the size of an
SG adaptively to limit the amount of flooding traffic. Our
experimental results show that the proposed mining
technique achieves good grouping quality. Furthermore,
the proposed OTSN with PST prediction, group data
aggregation, and in-network data aggregation significantly
reduces energy consumption in terms of the transmission
cost, especially in the case where moving objects have
distinct group relationships.
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